Julia: Metropolis Algorithm

julia
math
Author

Alicia

Published

October 4, 2024

Draw random samples from a distribution with the classic Metropolis algorithm.

Define p(x) and f(x)

Assuming:

\[ p(x) = {f(x) \over NC} \]

Where NC is a normalizing constant that is unknown.

Define the function

function f(xs)
    μ1 = 1
    σ1 = 1
    dist1 = Normal1, σ1)

    μ2 = -2.0
    σ2 = 0.5
    dist2 = Normal2, σ2)

    μ3 = -5.0
    σ3 = 1.5
    dist3 = Normal3, σ3)

    pdf.(dist1, xs) + pdf.(dist2, xs).*0.25 + pdf.(dist3, xs)
end;  # ; suppresses output in the Quarto document.

Set domain of p(x) for subsequent code

domain_min = -11
domain_max = 5
5

Plot f(x)

xs = range(start=domain_min, stop=domain_max, length=200)
xticks = range(start=domain_min, stop=domain_max, length=5)
x_tick_labels = [@sprintf("%.2f", x) for x in xticks]
ys = f(xs)

plot(
    xs, 
    ys, 
    xticks=(xticks, x_tick_labels), 
    xlims=(domain_min, domain_max*1.1), 
    linewidth=3, 
    xlabel="x", 
    ylabel="f(x)", 
    title="f(x)", 
    legend=false,
    titlefont=font(18)
)

Sample f(x)

Draw samples with Metropolis algorithm

num_steps = 1000000
σ_step = 1.0

samples = zeros(Float64, num_steps)
samples[1] = rand(Uniform(domain_min, domain_max))

for i  2:num_steps
    next_proposal = rand(Normal(samples[i-1], σ_step))
    samples[i] = min(1, f(next_proposal) / f(samples[i-1])) > rand() ? next_proposal : samples[i-1]
end

Plot histogram of the samples

histogram(
    samples,
    bins=200,
    normalize=true,
    xlabel="x", 
    ylabel="Probability Density", 
    title="Samples From f(x)", 
    legend=false,
    titlefont=font(18),
    linecolor=:white,
    fillcolor="#EFCB68"
)