function f(xs)
1 = 1
μ1 = 1
σ= Normal(μ1, σ1)
dist1
2 = -2.0
μ2 = 0.5
σ= Normal(μ2, σ2)
dist2
3 = -5.0
μ3 = 1.5
σ= Normal(μ3, σ3)
dist3
pdf.(dist1, xs) + pdf.(dist2, xs).*0.25 + pdf.(dist3, xs)
end; # ; suppresses output in the Quarto document.
Draw random samples from a distribution with the classic Metropolis algorithm.
Define p(x) and f(x)
Assuming:
\[ p(x) = {f(x) \over NC} \]
Where NC is a normalizing constant that is unknown.
Define the function
Set domain of p(x) for subsequent code
= -11
domain_min = 5 domain_max
5
Plot f(x)
= range(start=domain_min, stop=domain_max, length=200)
xs = range(start=domain_min, stop=domain_max, length=5)
xticks = [@sprintf("%.2f", x) for x in xticks]
x_tick_labels = f(xs)
ys
plot(
xs,
ys, =(xticks, x_tick_labels),
xticks=(domain_min, domain_max*1.1),
xlims=3,
linewidth="x",
xlabel="f(x)",
ylabel="f(x)",
title=false,
legend=font(18)
titlefont )
Sample f(x)
Draw samples with Metropolis algorithm
= 1000000
num_steps = 1.0
σ_step
= zeros(Float64, num_steps)
samples 1] = rand(Uniform(domain_min, domain_max))
samples[
for i ∈ 2:num_steps
= rand(Normal(samples[i-1], σ_step))
next_proposal = min(1, f(next_proposal) / f(samples[i-1])) > rand() ? next_proposal : samples[i-1]
samples[i] end
Plot histogram of the samples
histogram(
samples,=200,
bins=true,
normalize="x",
xlabel="Probability Density",
ylabel="Samples From f(x)",
title=false,
legend=font(18),
titlefont=:white,
linecolor="#EFCB68"
fillcolor )